Effective and efficient algorithm for multiobjective optimization of hydrologic models

نویسندگان

  • Jasper A. Vrugt
  • Hoshin V. Gupta
  • Luis A. Bastidas
  • Willem Bouten
  • Soroosh Sorooshian
چکیده

[1] Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Effective multiobjective hydrologic model calibration

Effective multiobjective hydrologic model calibration P. Reed et al. Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Effective multiobjective hydrologic model calibration P. Reed et al. Abstract This study provides a comprehensive assessment of state-of-the-art evolutionary multi-objective optim...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Multi-objective global optimization for hydrologic models

The development of automated (computer-based) calibration methods has focused mainly on the selection of a singleobjective measure of the distance between the model-simulated output and the data and the selection of an automatic optimization algorithm to search for the parameter values which minimize that distance. However, practical experience with model calibration suggests that no single-obj...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003